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1 Direct sum of vector spaces

In the first part of this lecture we will consider some more concepts from the theory of vector

spaces.

Definition 1.1. Sum of two vector spaces U and V U + V is a vector space which consists of

all vectors u + v, where u ∈ U and v ∈ V .

Definition 1.2. Vector spaces U1, U2, . . . , Un are called linearly independent if from u1 +

· · ·+ un = 0, where ui ∈ Ui it follows that ui = 0 for all i.

Sum of the linearly independent vector spaces is called a direct sum of these vector spaces

and is denoted by U1 ⊕ · · · ⊕ Un.

Definition 1.3. The vector space V is said to be equal to a direct sum of vector spaces

U1, . . . , Un

V = U1 ⊕ · · · ⊕ Un

if any vector v from V can be represented as

v = u1 + · · ·+ un, ui ∈ Ui

uniquely.

For example, the plane R2 is equal to a direct sum of x− and y−axes.

Example 1.4. The space of all matrices is equal to a direct sum of the space of all symmetric

matrices and all skewsymmetric matrices, since any matrix A can be uniquely represented as

A =
A + A>

2
+

A− A>

2
,

and one can check that A+A>
2

is always symmetric, and A−A>
2

is always skewsymmetric. More-

over, the sum is direct, since if a matrix is both symmetric and skewsymmetric, it is equal to

0-matrix.
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2 Invariant spaces

Definition 2.1. Let A be an operator in vector space V . The subspace U ⊂ V is called an

invariant subspace with respect to operator A if

AU ⊂ U.

This definition means, that the vectors from invariant subspace remain in this subspace

after application of the operator A.

Example 2.2. Considering the operator of rotation in the 3-dimensional space around some

axes, we can see, that all the planes, perpendicular to the axes of rotation are invariant. More-

over, the axes of rotation is invariant itself.

If the basis {e1, . . . en} of V is such that first k vectors {e1, . . . , ek} is a basis of U , then the

matrix of the operator A in this basis has the following form:

(
B D

0 C

)
.

Moreover, if the space V is equal to a direct sum of two subspaces V = U⊕W , and {e1, . . . , ek}
is a basis of U , and {ek+1, . . . , en} is a basis of W , then the matrix of A has the following form:

(
B 0

0 C

)
.

Example 2.3. Consider the rotation in the 3-dimensional space about some axes be an angle

α. In the basis {e1, e2, e3}, if the vector e3 is directed along the axes of rotation, the matrix of

this operator has the following form:




cos α − sin α 0

sin α cos α 0

0 0 1




This matrix is consistent with the decomposition of R3 into a direct sum of two invariant

subspaces:

R3 = 〈e1, e2〉 ⊕ 〈e3〉.

3 Jordan canonical form

As we saw in previous lectures, some of the operators are not diagonalizable. But we are still

able to simplify the matrix of the operator to some extent.

2



Definition 3.1. The vector v ∈ V is called a root vector of the operator A corresponding to

λ if

(A− λI)mv = 0 (1)

for some natural number m. The minimal m is called the height of the root vector v.

We see that it is a generalization of the concept of the eigenvector, since eigenvectors are

root vectors, for which m = 1: vector v is called an eigenvector if

(A− λI)v = 0

Example 3.2. For the operator of taking a derivative in the space of polynomials root vectors

of the height m corresponding to λ = 0 are the polynomials of degree m − 1, since, their m-th

derivative is equal to 0.

If the vector v is a root vector of the height m, then the vector

u = (A− λI)m−1v (2)

is an eigenvector with the eigenvalue λ. Thus, λ’s should be roots of the characteristic polyno-

mial.

The root vectors corresponding to some particular λ form a subspace. This subspace is

called a root space and it is denoted by V λ(A). If v is a root vector of the height m, then

vector (A− λI)v is a root vector of the height m− 1. Thus the root space V λ(A) is invariant

with respect to (A− λI), and thus with respect to A.

The set of the root vectors of the height ≤ m is a kernel of the operator (A−λI). Thus the

root space V λ(A) is a union of the following chain of subspaces:

Ker(A− λI) ⊂ Ker(A− λI)2 ⊂ . . .

Since we consider the finite-dimensional spaces, this chain will stabilize, and thus V λ(A) =

Ker(A−λI)m for some m. The matrix of the operator (A−λI) in the basis of V λ(A) consistent

with this chain of subspaces is triangular with zeros on the diagonal, and thus the matrix of the

operator A is triangular with λ’s on the diagonal. From here we have the following property:

the characteristic polynomial of the operator A on the space V λ(A) is equal to (t− λ)k, where

k is a dimension of V λ(A). No we have the following proposition:

Proposition 3.3. The dimension of the root space is equal to the multiplicity of the corre-

sponding root of the characteristic polynomial.

Proof. If {e1, e2, . . . , en} is a basis of V , and first k vectors of it are a basis of V λ(A), then the

matrix of A has the following form: (
B D

0 C

)
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Thus

pA(t) = (t− λ)k det(tI − C).

Now let C be an operator in the space W = 〈ek+1, . . . , en〉 with the matrix C. We need to

prove, that λ is not a root of the polynomial det(tI −C), i.e. it is not an eigenvalue of C. Let’s

assume the contrary. Then there exists v ∈ W , such that Cv = λv. Then

Av = λv + u, u ∈ V λ(A),

and thus (A−λI)v = u is a root vector, but in this case v is also a root vector, which contradicts

the definition of V λ(A).

Proposition 3.4. The root spaces, corresponding to different λi’s are linearly independent.

Proof. Assume

c1e1 + c2e2 + · · ·+ ckek = 0, ei ∈ V λi(A). (3)

Let’s apply to this equality the operator (A− λkI)
m, where m is the height of ek. We obtain:

(A− λkI)
mc1e1 + · · ·+ (A− λkI)

mck−1ek−1 = 0. (4)

Using induction we have

(A− λkI)
mc1e1 = · · · = (A− λkI)

mck−1ek−1 = 0. (5)

But since the operator (A − λkI) is not degenerate on any of V λ1(A), . . . , V λk−1(A) (i.e., not

equal to 0 for nonzero vectors), we have c1 = · · · = ck−1 = 0, and thus ck = 0 also.

These two propositions lead to the following theorem:

Theorem 3.5. If the characteristic polynomial pA(t) can be factored into linear terms, then

V =
s⊕

i=1

V λi(A), (6)

where λi’s are different roots of pA(t).

Now we will discuss the action of the operator A on any of the root spaces.

Definition 3.6. The linear operator N is called nilpotent if there exists integer m ≥ 0 such

that Nm = 0. The minimal m is called the height of the nilpotent operator N.

Example 3.7. The operator of taking derivative in the space of polynomials of bounded degree

Pn(t) is a nilpotent operator of the height n + 1.
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Since V λ(A) = Ker(A−λI)m for some m, the operator N = (A−λI) is nilpotent on V λ(A).

Thus we need to study nilpotent operators.

Let N be a nilpotent operator in the space V . The height of the vector v with respect to

N is the minimal number m, such that Nmv = 0. Obviously, the height of any vector is less

than or equal to the height of the nilpotent operator. We will denote the height of the vector

v as ht v.

Lemma 3.8. If v is a vector of the height m, then vectors

v, Nv, N2v, . . . , Nm−1v

are linearly independent.

Proof. Assume

λ0v + λ1Nv + λ2N
2v + · · ·+ λm−1N

m−1v = 0. (7)

Let λk is the first nonzero coefficient. Then applying the operator Nm−k−1 we obtain incorrect

equality

λkN
m−1v = 0. (8)

Definition 3.9. The subspace 〈v, Nv, N2v, . . . , Nm−1v〉 (m = ht v) is called a cyclic subspace

of the nilpotent operator N, generated by vector v.

Obviously the cyclic subspace is invariant with respect to N. The operator N on the cyclic

subspace 〈v, Nv, N2v, . . . , Nm−1v〉 has height m and in the basis {v, Nv, N2v, . . . , Nm−1v} has

a matrix

J(0) =




0 1 0 . . . 0 0

0 0 1 . . . 0 0

0 0 0 . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . 0 1

0 0 0 . . . 0 0




(9)

which is called a nilpotent Jordan block.

Theorem 3.10. The space V can be decomposed into a direct sum of the cyclic subspaces of

the operator N. The number of the spaces in such decomposition is equal to dim Ker N.

Proof. The proof is done by induction over n = dim V . If n = 1 the theorem is obvious. If

n > 1 let U ⊂ V be an arbitrary (n− 1)-dimensional subspace, containing Im N. Obviously, U

is invariant with respect to N. By the induction hypothesis,

U = U1 ⊕ · · · ⊕ Uk,
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where Ui’s are invariant subspaces. Let’s take any vector v ∈ V \ U . We have

Nv = u1 + · · ·+ uk.

If for some i ui = Nvi ∈ NUi, then we can substitute v with v − vi, and get that ui = 0. Thus

we can assume that either ui = 0, or ui 6∈ NUi.

If ui = 0 for all i’s, i.e. Nv = 0, then

V = 〈v〉 ⊕ U1 ⊕ · · · ⊕ Uk

is the decomposition of V into a direct sum of cyclic subspaces.

Now let Nv 6= 0. Then

ht Nv = max
i

ht ui.

Let’s assume that

ht Nv = ht u1 = m.

Then ht v = m + 1. We will prove that in this case

V = 〈v, Nv, N2v, . . . , Nmv〉 ⊕ U1 ⊕ · · · ⊕ Uk.

Since u1 6∈ NU1, then dim U1 = ht u1 = m, and thus

dim V = dim U + 1 = (m + 1) + dim U2 + · · ·+ dim Uk.

Thus it is enough to prove that

〈v, Nv, N2v, . . . , Nmv〉 ∩ (U2 ⊕ · · · ⊕ Uk) = 0.

Assume that

λ0v + λ1Nv + · · ·+ λmNmv ∈ U2 ⊕ · · · ⊕ Uk.

Since v 6∈ U , λ0 = 0. Taking projection of other summands onto U1, we get

λ1u1 + λ2Nu1 + · · ·+ λmNn−1u1 = 0,

and thus λ1 = . . . λm = 0.

Now we will prove the second assertion of the theorem. Let

V = V1 ⊕ · · · ⊕ Vk

is a decomposition of V into a direct sum of the cyclic subspaces of N. Obviously the kernel of

N can be decomposed into a direct sum of kernels of the operator N, restricted to summands

V1, . . . , Vk. But since the dimension of the kernel of the restricted operator is equal to 1, then

dim Ker N = k.
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Now getting back to any linear operator A, we can see that in the cyclic subspace of the

nilpotent operator (A−λI), restricted to V λ(A), the operator A has the matrix of the following

form:

J(λ) = J(0) + λI =




λ 1 0 . . . 0 0

0 λ 1 . . . 0 0

0 0 λ . . . 0 0

. . . . . . . . . . . . . . . . . . .

0 0 0 . . . λ 1

0 0 0 . . . 0 λ




(10)

This matrix is called a Jordan block with the eigenvalue λ.

Definition 3.11. The Jordan matrix is a matrix with Jordan blocks over diagonal, and zeros

everywhere else.

Combining the previous results, we obtain the following most important result from the

theory of linear operators:

Theorem 3.12. If the characteristic polynomial of the operator can be factored in linear terms,

then there exists a basis, in which the matrix of the operator is Jordan.

Corollary 3.13. Matrix of any operator can be transposed to Jordan canonical form over the

complex numbers.
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